

GAMMA GT (2-8°C)

CATALOGUE NUMBER	KIT SIZE (ML)	
MPRGGT1	1x60ml / 1x12ml	
MPRGGT2	4x60ml / 2x24ml	

Intended Use:

For In Vitro diagnostic use by trained professionals only.

This reagent is intended for the quantitative determination of Gamma Glutamyltransferase (γ -GT) in human serum and plasma.

Clinical Significance:

Elevated levels of γ-GT are found in many forms of liver disease including primary and secondary liver cancer.

Increased levels are also found in cases of alcohol abuse and liver cirrhosis. y-GT is the most sensitive enzymatic marker of hepatobiliary disease.

Test Principle

The substrate L- γ -glutamyl-3-carboxy-4-nitroanilide, in the presence of glycylglycine is converted to 5-amino-2-nitrobenzoate by γ -GT. The increase in absorbance due to the formation of 5-amino-2-nitrobenzoate can be measured photometrically at 405nm and is proportional to the γ -GT activity in the sample.

L- γ -glutamyl-3-carboxy-4-nitroanilide + glycylglycine γ -GT —

L- γ -glutamylglycylglcine + 5-amino-2-nitrobenzoate

Reagent Composition

REAGENT	COMPONENT	CONCENTRATION
	Tris Buffer	100 mmol/l
Gamma GT R1	Glycylglycine	150 mmol/l
	Preservative	0.09%
Gamma GT R2	L-Gamma Glutamyl 3 Carboxy 4 nitroanilide	2.9 mmol/l

Reagent Preparation and Stability:

R1: Liquid, ready to use

R2: Liquid, ready to use

R1 and R2 are stable to the stated expiry date when stored unopened at 2 - 8°C. Once mixed, the Working Reagent is stable up to 28 days stored at 2 - 8°C and 7 days at 20 - 25°C. Analyser onboard stability is up to 21 days when R1 and R2 are kept separate and up to 14 days as Working Reagent, with refrigeration (2 - 8°C) for each system. Dispose of reagents carefully in line with local guidelines.

Sample / Sample Preparation / Sample Stability:

Collect serum and Li heparin or EDTA plasma by standard venepuncture technique. Gamma GT will be stable in serum for up to 7 days at 2 - 8°C and 20 - 25°C. Centrifuge samples containing precipitate before performing the assay.

Assay Procedure: Sample Start

Prepare a Working Reagent by mixing R1 and R2 in the ratio 5 + 1 volumes.

WAVELENGTH	405nm (400 – 420nm)	
TEMPERATURE	37°C	
CUVETTE	1cm Path Length	
BLANK	Air / Distilled water	

Sample	250 μl 100 μl		50 μl	
Working Reagent	2500 μΙ	1000 μΙ	500 μΙ	
Mix. read initial absorbance and start a timer immediately. Read the absorbance again after				

exactly 1, 2 and 3 minutes then calculate the change in absorbance/min (Δ Abs) **Calculation:**

Concentration y-GT (U/I) = Δ Abs x 1158

Assay Procedure: Substrate Start

R1 and R2 are ready to use.

WAVELENGTH	405nm (400 – 420nm)	
TEMPERATURE	37°C	
CUVETTE	1cm Path Length	
BLANK	Air / Distilled water	

R1	2500 μΙ	1000 μΙ	500 μΙ	
Sample	250 μΙ	100 μΙ	50 μl	
R2	500 μl	200 μΙ	100 μΙ	

Mix, read initial absorbance and start a timer immediately. Read the absorbance again after exactly 1, 2 and 3 minutes then calculate the change in absorbance/min (Δ Abs)

Calculation:

Concentration γ -GT (U/I) = Δ Abs x 1369

Calibration Frequency:

Two Point calibration is recommended on automated systems after reagent lot change or as required following quality control procedures.

Performance Characteristics:

Measuring range:

3 - 1200 U/I

Dilute samples with higher concentrations using Normal saline 1+9 and rerun the assay. Multiply the result by the dilution factor (for 1+9 dilution, the dilution factor is 10)

Analytical Sensitivity: (Lowest detection limit):

3 U/I

Imprecision:

Intra-Assay Precision

Sample	Mean (U/I)	SD (U/I)	CV %
Pool 1	41.6	0.60	1.44
Pool 2	105	0.65	0.62
Pool 3	169	0.62	0.37

Inter-Assay Precision

Sample	Mean (U/I)	SD (U/I)	CV %
Pool 1	39.5	0.66	1.67
Pool 2	87.1	1.42	1.63
Pool 3	215	2.91	1.35

Method Comparison:

AMS Gamma GT (y) was compared with another available method (x) and the following results were obtained:

y = 0.993 x + 0.595, r = 0.999

Interferences:

Criterion: Recovery within +/- 10%

Icterus: No significant interference up 30 mg/dl of Bilirubin.

Haemolysis: No significant interference up to 150 mg/dl of Haemoglobin. **Lipaemia**: No significant interference up to 2148 mg/dl of Triglycerides.

Reference Range

nere ente nange.		
		37°C (U/I)
	Male	8 - 61
	Female	5 - 36

Each laboratory should establish its own mean reference range according to the population.

Limitations of the Test:

On automated analysers use an acid wash facility when performing α -microglobulin and β -2 microglobulin assays to prevent carryover from the GGT assay.

The result from this test should not be used as the sole criteria for the diagnosis of liver disease, a confirmed diagnosis should only be made by a physician after all clinical and laboratory findings have been evaluated.

Automated systems:

Contact AMS Diagnostics Technical Department for applications on a wide range of automated analysers.

For automation we recommend the use of a serum based calibrator.

Quality Control and Calibration Material:

Calibration Serum: QCCCAL1 / QCCCAL2

Human Assayed Control Normal: QCCHAN1 / QCCHAN2 Human Assayed Control Elevated: QCCHAE1 / QCCHAE2

References:

- Glick M. R. Ryder K W, Jackson SA. Graphical Comparisons of Interferences in Clinical Chemistry Instrumentation. ClinChem 1986; 32:470-474
- Bablok W. et al. A General Regression Procedure of Method Transformation. Clin Chem Clin Biochem 1988; 26: 783-790
- 3. Persijn JP, van der Silk W. A new method for the determination of gammaglutamyltransferase. J Clin Chem Biochem 1976; 4:21#
- Shaw L M. Keeping pace with a popular enzyme GGT. Diagnostic Medicine 1982; May/June 1-8.
 Szasz G., Methods of Enzymatic Analysis 2nd English ed New York: Academic
- Press Inc 1974:717
 6. Thomas K. Clinical Laboratory Diagnostics. 4 th ed. Marburg: Die Medizinsche
- Veriagsgesellschaft; 1992 7. Tietz NS. Clinical Guide to Laboratory tests 3rd ed. Philadelphia, Pa.W.B,Saunders Company. 1995:286

		lane.	
REF	Catalogue number	.4	Temperature limitation
(Ii	Consult instructions for use	LOT	Batch code
IVD	In vitro diagnostic medical device	2	Use by Date
	Manufacturar		

